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Abstract

Recommender systems have received widespread attention from academia and industry in
recent years. Modern recommendation systems are often built on implicit feedback data (such as
user clicks, user searches), which are more realistic than the collection of explicit feedback data.
However, dealing with implicit feedback is more challenging because of the inherent exposure
bias in them. Implicit feedback is a joint product of preference and exposure, and it is signifi-
cantly affected by the user’s exposure to the item. Does not accurately reflect user preferences.
Existing methods to combat exposure bias mainly include reducing the confidence in unclicked
data, adopting exposure models, or using propensity-based models for leverage propensity scor-
ing. These methods often lead to biased estimates and suboptimal results.

In order to better correct the exposure bias, under the guidance of the instructor, the author
discovered the possible uniqueness of user preference and user exposure, and specifically designed
and programmed the use of two graph convolutional neural networks that are expected to train
preference and exposure respectively. The network model was jointly trained, and theoretical and
experimental analysis proved that it can correct the exposure bias to a certain extent, which is more
effective than the original model.

Keywords:

Debias, Recommendation, Graph Convolutional Network, Implicit Feedback
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] Y A€ THEREAE SR loss
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F#E, 1L E(¢u) =7, N THZIJEH

(Ellu))? = (705 + (1 = 7)6)2 = ()62 + (1 — )2 (6)% + 29(1 — 7)6 6L
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# 5.2 AFEAREITE Yahoo I Coat HiE4E LAIHEEEXT

Yahoo- Yahoo- Coat-
Y Coat-Recall@5
Recall@5 NDCG@5 NDCG@5
MF 0.7955 0.6604 0.5563 0.5214
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N 0.8092 0.6703 0.5944 0.5245
2 s B - 2
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2 A Y - AR i
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BREMLAR, ARFEZETH, REEHNEARREMR. Bk, EEFEERTUL
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Recall@5 NDCG@5
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% 5.4 B MIFHER Light GCN BEXA I EREN o R

i Z50 | LR Yahoo-Recall@5 Yahoo-NDCG@5
2 AMEH 0.8142 0.6783
2 0 0.8198 0.6811
2 1 0.8157 0.6813
2 2 0.8116 0.6660
2 3 0.8118 0.6720
2 4 0.8110 0.6410
2 5 0.8112 0.6813
2 6 0.8232 0.6833
2 7 0.8214 0.6834
3 A 0.7858 0.6605
3 0 0.7885 0.6552
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3 2 0.7869 0.6543
3 3 0.7864 0.6533
3 4 0.7850 0.6507
3 5 0.7744 0.6440
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3 7 0.7996 0.6656
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AT AN o AR AL o BB AR 2 W 48 T B R

1 &#®

RERAGELWEANRETEEN L AMNE, Y I REMAHELRS,
REfE AR RMERRE RN’

e 5 BT N, e R R EE NAF P 5E A M A & o — 54 & 5 IR AT
G ERNRE, FTHEAFENEE ERHTIEL, REAKAMEATNERNITK &
MR F e EF 4R, @FEAHE (precision), & [ (recall), VI — 7 &1+ 4% 35 (Normalized
Discounted Cumulative Gain, NDCG) , F#] |4 #f % (Mean Reciprocal Rank, MRR) , i# %
.12 1€ precision@XK, recall @K, NDCG@K, MRR@K % .

K % 4 42 W 4 (Graph Convolutional Network, GCN)! g8 4% 4 25 3 4L 2 B A E 44 5y
B, kX%, AP-BaxLM%%, ¥ GCNs LA THERG T, " URSEE A
P Z Bk R i Z (A B KB, REEEaEEAMENEE ., TFER, £ T GCNs #y
REHERRBETHLHE, BET 2T ENFARE.

B, AT GONwWHEFFEFINT BEMER, FFHF P -8 L g0 EEN%
M, BRAFI] N R ZE W KRR, ZIT EARBNA AT AT AR ER. 2K,
BRFINERANG ., ZERFEREFEA, #—FEFATHREFEZHEEIRR. 7
O, e RMMEATREEMREFIER, GARFERZWRRT KT oy BB A7

AT, T GCNs Wi H EF AN E s — sk fo 7 &, Flan, T E KA AERE
BE, A PHEEERNEREMSZHEEEFR, NHFEH - THWRRIRE. HHE
E¥IBEANTU R EAE, 2T GCNs WiEHFH EERKRERERAARKRAR, HE
LR R EEEER.

E T MM AR (Matrix Factorization, MF) K £ ¥ & Al b 85— 2 7444k 77 i 2 4708
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RWIRTERE T E. AXENELRATERAMSN, RITEFRORBRA, LATE
Aok, HEHFRGIRWHF AL EE M. SFT B XL

2 EASMRRIAR
21 H|RAFERER

FEfE AL A AR B, Bryan Perozzi % At XPIH R 2|8y “F & i & (Deep Walk)”
MAEZHMARN, REXEFRHT —HZINETTEREERTATTE, LEESH
EXB PR AR R BT RD, REGHATHEAANF ., £L6, HREKTIETHEEAT
W5 B R AE 2 3] #1977 7Y (words) 2| & (graph) B9 3 B, 7 — i ey R I G A F
M A HBIE D 60% BIEN TR T AW E R T %, MEME, BERNZH —F#
Wy, EXAF Ay Ea R ERT —HRUNEELRTEE, XHENFE (Embedding
Vector), ML MW RAEN S EREENINEGER, LR A2V, LEA P -HRLELHE
Enf AR MREEENRR, 2RETAP Y RWRenE, BX¥IXLREE, 7
DL R P ok gty o B9 1F . MF AL fR B 2 2. & T2, ER#ALRS, wFkiE
REMGEHE. TEARARF YR ERERE. HTHAXEER, ARENERT
LZivgthy BT, mANENAT. SINRER. £6AAGERE, BT EE—
ERELREGTHREEREFYR, EMEE-—LERE. EHit, At —FEAER
HEWMEERER, RAYMBEFRAFARNEERAZ —. N5k, FRAMERBRMAL
= F 77 15 7] AR AE 4 fm AR (Weighted). 244R (Debias) 4, H % 8 L& % A4 W 4 (Light
Graph Convolutional Network) 2 & EH R ZMHN T2 —, XL FEEEN TETILE
W,

2.1.1 A R4k

AR Ak A B 2 A2 DGR B & AN BR T B\ A AT o B AR B 3R s 3 X 1B B9 B AT AR (Degree
Weighted)Bl, ¢ # A 2 1T #m A1 (Sample Weighted). %t 7 )l 4 1 & A& & #£ 4T #r A1 (Embedding
Weighted) 1% %, R EEZENNMEN T E. XM FERINBEENATNTF, ELI
THE-LRAERTURBIIARERZ A, GEHT. LFPRELENN T EEX



T EBR O A TR A
E¥mRemik,. T —MHEEY, ERTWAREN L EERRERRERWA P,
Hfmsr AR E KA P S ENER AR, FrilE T AT EHmR e &= k2R
HRH, XA A E AR E A (Confidence Weighting). it Fb 5 vk 42 R 2, (8 3|34 %
T 2T X R EREHKEE P IE R E R e p| F0) X B AR A )| 55 2 R & #AT
TeAR B K AR %, HL A | F & Rong Pan % AI4E H Y ExpoMF, A T EM & % % #
TER B KR, £ M-step Fr b Loyt Kk & T B AT losse E, 6, B% T ELE
AWERBEE, BT EO,Y.,, =1=1L0AFRELER—ERLT, XAHLEET
DUEERBIRELERMERBNETIIRENAFRITEENERE.

~ 1
LOSSE:(;poMF(R) = 5 Z Quﬂ‘ [Yu,ldsz) + (1 — Yu,z)di?z)]

(u,i)eD

2.1.2 YRttt

UREAHERE#ET XBRERFENER, LHRAFPSAF. 185982
B AT X S A R AU AT B A AR RINEREN TR T HETEX
KA Z A, MXTEEERRA P A BN EEHEI N BB FAAL, X
FHEEERA PRGN EETHREL> FEXNERXF AL, wHaEH P XY &0 #
W, BEETAREREERE, BAFEA S ERE. T, BXKE, GHAF
TAAWERILE (WWRTWE, BEES) $E550KE, EELFHETRA. X4
REhRE, AHPEEBEENLEREEHNELREHN, 4 ERHEN YU RTFER
BHEREENLAFETAFATARER T 2R EN ML, T4 X BIE 8 2R
NFEANETELEY B ARWRNS P~ EWBERE, XK “BREE". £TH
[F] i1 € (Collaborative Filtering, CF) W A & H h gy g AR XU, SZ AW ITEF, £ T
Jil P 47 (User Propensity, UP) # % 77 i B & T 3¢ #f 3£ [F] 2 =] #7  (Symmetric Learning
Propensity)l?)fo % T & & f £ 4 2 07 & g 77 EUOMUOR T TR . WE K F LK
% (Neural Graph Collaborative Filter, NGCF)!' g & 7 i JLA 7 &M E %, vHEHFLES
4 message construction (V¥ B3 ) F message aggregation (VH E R 4) W4, LFIANT
AR 77 (attention) L, A5 TEFTR. W LightGCN 1 % £ 44U P & AT B 77 i 2
—, WAeHTTEE,
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Vncer(Ua, ie)
L VAN

]

__________________

[

Prediction Layer

Embedding Propagation Layers

Erhlzddings.

A 2.1 LGCN BRAELEHREE

2.1.3 Light GCN

BE A E M % (Light Graph Convolutional Network, Light GCN) £ % GCN # A& &
MHRAE., GCNIWEARRZ BT FREE LWBERF I T ERET, Al EBRPAT
Bail, BURA<FEMAIELE A B AR T R BT

ERE L EMEWEE, NGCF /A T B A& #HATAE ¥, {2 LightGCN N $#
W, BXLERATHARENFRASRE, HHEFA GON F# Loy EHHE. 4k
BUE R E B A EEENRIT, PR HBEIRIEAT BEAN S &, TUBEIT AR,
.89 NGCF %| LightGCN 81t ft. NGCF (WA X &k T T

E(l) — O'(L 4 I)E(l_l)WI(l) + LE(I—l) . E(l_l)WQ(l)L — D_0'5AD_O'5.

M LightGCN By [ X Lo T, HF a L RBIE LB Y F4, HikAhk EXDT
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E’(k‘H) — D—0~5AD_O'5E(k)E = ool + a1 B+ ...+ o B
HE AN
0 R
RT 0
22 FEFE

BEHESMEARGZARANEERR, TEURNESRUEEHRAT2ES.
AR AR A Fo 4 b Ak S o A B (BT R R, T B A R R SR R & AR
BIfE 25 T 1% £ KA H lightGCN, £ LB FH LA R F £ AR, oo LA 8y )3
THRNHEH TR ABNRRASEERE Y, MEELAXKREFRRI TN EEEZ %,
ZEERBHEERTUERSNHEREST, EZ LightGCN RE2%& 7T 23 EE L &
THEFREITETRE, oA EE R, KIHE—AEEH

3 HRRE

FA A TR EE, ROTULIA, BN TEFAZEAMREAR. TA N TEHE
H 7 lightGCN V8 & & S ALH /7 7 7] #L. M user-item W EMEF fEZR L HY; FH I
BALRENETHERAEULAEREFNRERERERN; 7—7E, REZAR
KBB4, BATT T AT NSRRI E B A RSB RN ER, DBk
HEAMEAS, AESHEE LHTHR. LA T EF RV RITHG—IF AT M.
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BHEAFAUERZENFARFIL RN ZRE. AT, BTEFERARFHFENERN
MEFAE, YHNFLSREEREUERALTZFFTEENA . BXWE, RAF T A%
EE Y m R FERTRHATRE R P RE A, BB nREz—, AAHEY
FEXABEG D SRR E T ARBREE A AT, TRFTETERRTRE
ES5HWRE, FIRWREERT lightgen F 32 TR EFEE, FHit, W44
BIAH A P4 RAR AR AL, RAMEFETR—MERAXNKRBFA. ATEF, £F
i3t 18 B RO R = ] AL 2 E BR AR A AT, SRR T E S E N SRR Ob R =
B 77 ¥ o

EEFMHNER T, BNMET “APurEWal, EAF uERD & 146 ]
BATHFP ukRAERANER” X8, AFEA lightGCN # A [ & )|k — A H 7 -4 &
3T 4EFE Ry A1 — A P BRI Opyn,  DAFT 2 FRAUAR )1 45 5 25 R 09 28 O 1E A R %
BB, I DU AT KB B 4 R O M A A R AT AR M ER A £ XA P e A AR A o RO
B E R AR, PR BB ROk BB k. RO RRET AAERER T F
2 ##9 lightGCN | 2 F 1~ ] 4 & 67 embed LU B A 28 % B 45 AE (B e T [F] R 2K/5 fm A 451 5% B
BEME. Wb, EE-BBEEE T LR 5K lightGCN A (£ 7 #9451 B 217 4
1o

1.1.2 #ENE

B A AT BEE A, R A G NAAF AN M A & — L4 & 8y F AT,
Wl G EMNRE, RITERFENEE LH#TIE, RERAMETNERNTK 24



ST BB (27 2 AR 5
MR b A4 4T, B E (precision), & [ (recall), I — 37 47 B i+ 3475 (Normalized
Discounted Cumulative Gain, NDCG) , “F#] |4 # % (Mean Reciprocal Rank, MRR) , &%
1,12 1% precision@K, recall@K, NDCG@K, MRR@K 4., W #HKIE & LT 4 4 T LR 2
ERBREmEAAL, MEFWINEEFRNREHETRASMMRLEFFNA P SEH
£, HA | F 81 Gowalla, Amazon-Book, %; J&# i) 4 &N 2 F P EH A #RHE T 45
BHENBWFANBEEHENETER, BREXNTHEY B ZHAAURLN; MNRE
W2 —fx o P B 448, B AF) F 45 YahooR3, Coat %, EH# LI, #HiFH
HHEHEZR, TTHRLREOEEE - RREXCNREF Y SN EEREL AL, LT
& recall@K A |, Wl REFENMAP uE KA R iMESTSERE, £F K MHIE,
MEAA KSR P TFEK A EEINERL FHLHMK ANET X LY &, AXH
FHEWK MR FERANNETEERAE YR FHLE K AN e EEARKH AN
Bt recall. A T A2 I 2R HA 18] 2 oS Bt 2, R ISR B T R YI SR R X 9 A ISR S An B
. BRER (epoch) FiL A ARIESE FNIK, % RAEZESW L/ epoch 4% F 4
T HRAME, WELIAE, EERENRKE LK FERELER. L AESH, — &
FEEGHEAREARY. EFWRABZFU AR, AR 0AFFENER LRI

1.2 ZAFHEXFEW

Mg ABEMA TR AN CRAE, BF AL CHEAIAREE T AT R GEH—
G, TRMBATRE. . RAF LG A0, EERRTFENEMREEA, A
HEREBEREZ, TERHTREERERERATRE, B, AR EEELTRARER
B mERM, R —METEHERMEPENBRT %, BREZNELE N LEMN
B AERFE, ABETX RN E F AR 2T RSN, FAT X #ER ST
ZEAAER. FH, 2eBWENENER, KRR BOTHNEEEE, U
A AR BERA R EF AN R, XAR BT HRAEER 2 RIBE LI TNENK
&, AR RTR I ARG T R BT k. EEERTE, AR R G E TR
&R W 4 B R B O e Z 8 77 i%, B E A lightGON 1R 4 48 % R Gp By A v A #E4T
BHENRR, EXEREREE LHTLRRIUE, AR IR L ERIEELERNE
AR R, AEFRAMAFHEERAREEE MR, MEUERERS . TR B
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TRARAFPERMHERE, CEE NI FREANTFYME, S LIR, KFAHEX
FEHNETRLRANREFREAWEZF A, fH-HETEHERMENEAET %, UMK
AR RSP R, 13048 X U Y E R B 70 A 52 B B ] 9 R R

2 FEWEZERAfMPEALLE

21 FEHRARAE

AFEF, EH5FERRGEZAEERMENE, ARENAIEFERATERY
B G, DR MRA R, IR T Y, RARWEREE CE T RNEE L
R (MF) fEEELF (Light GCN) . EFRFHNATEF, R¥EITHELRE
B EF W FT % KR ReCRec; T AR % EEERER Fimig R A BMEBHHLEFFT
RGCN # &, 15 5 3] 3x 0 J 3 FUAH 48 W] 45 %4 L e 1 SCRe, R0 (]33 7 ax 2696 5 5| L 86 XX,
S 7 42 AT T MF A lightGCN #4189 87 A T1€, &+ WMF. ExpoMF,. RelMF,. CIMF,
BISER. NGCF. DGCF. SGCN %, % [# 7 A (MF) 28 A et py R, A0 B8 E
HENF P uw ol i i 87— A dim EH 8 (embed), ¥ B A7k 15 48 (WA 1 AME 4
o & s A\ T, DLF & e - ARME 4 KWL E 154« WMF, ExpoMF, Rel-MF, CJMF, BISER
A& MF 89— S04 A AR AL, WMF 3R 8 35 2048 B9 STk 05 7] 2 A SRme AT Ao, |48 )3 —
., ZEFRTE. £THFPESE%KH; ExpoMF 2R A TEEW A RER N R KM%
1R 77 i ; Rel-MF U & % T 7] ( propensity) 89X & 1 2 1r 77 ik, 2R BUE AT B 38 < 10 M 5
CIMF R R&EHWETH P B e =k 77k, 2R F 83k B 2 50w o f P e 4 0
%> % ¥ T BISER WZETHmEm &, AET — RV kB RFEEBHTIN. NGCF,
DGCF #1 SGCN 5 LightGCN 8971 & 77 %, BUAE % H W A7 2 5 £ 1 Bl 89 5K 8 % embed
W F BB, M AT 8\ A2 B AL 3 (smoothing) Y B E . T lightGCN M 2 &£ T {12 K&
Bl ik, WRAAFP-HEB R EEMRE (JI%E), E0 HEHEHE N, N lightGCN Frit 4
HHSNE 4 dwm TARITE:
1) BRETE Ul AT 4R %

0 R
RT 0
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2) P ABTHE—, FELALERBILT I EERAHN:
B¢+ = D=3 AD=3 E®)

3) ML EHEMREFEHAT KA, BEHLHENE:

E =apE0 + 0 EW 4+ 0 E® + ... + a, E®

UmEFEFEZH T ERS . BRAVT UZRE A F A E B R R XA 5 )
%, T LLEIRRT lightGON £ 09 & R E #AT L. M xevxf B#EAT R U R XH T %,
HRFMH = B £ OpenGSLE!, RGCNPIFz LDA-GCL™., OpenGSL # % # &ty % 5 #yi6
X, BT — AN EEE A RAE %, LDA-GCL £ 5] T GNNs # it £ L7 GCL # £
oy e 0 B R R R e | A R PR E LA R T RGON M 2 &AL YA RKE, —5K
Hui AT ERETENE, F—HRKUAENT — LW E, AJE#E loss #mAFAK
B2 B embed WE 5 K. @R B ARG L I, X80 R AR B AT Z A
A K, HF RGCN ® Xy “BAAL L B %4 T gy, RRATHLZHE, 4
R b Az T E R, EREH B alE

22 BEAREL

D F 2k 45 1 ] T AN AR AL ] B 006 R O A Ml I AT )1 4R e xd o AR AT R AL 7 46
v EEZ R, BABEIFTE .

ER RN

) FBHKEE, &F lightGCN YWHER KRG, X —F ¥ LLHE R T &,

2) X A% A A 22 ¥ 4 7 LightGCN B3 - R #TEE,

3) EEEHIEE FNRF R,

4) A WA K,

MTEAFMERE AR R B, FeRtEEREELRTTEL
AR R . BB Rk, RG] REAHEREK:

1D BobEENKL DT RIFERGK, XM, 7 LAE R T F 4 H embed )| 4.,

2) BAHEEHRHEMES AT IRTFEMEQFEME. i, o LEAFEMETIN loss.

3) BAEMWTREES, 7 LUEILA laplacian £ F APMHR . sk, TLH

10
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laplacian % F 5[ A\ loss.

MEHEG RS, TUHY HHE, ARFEF = K, BUREERELNT
#, # lightGCN By & FE &, AT LAn sk A 7 -4 d 1 ok LBIE & oy Eab iR HE A
HERAENRE, T UREEF P SR P, 5 549 5% 2 8 848 < W 1F o %A E e b
s MTHRMWA, TEHZEUSL AUREMNEFRTEHER, THEELE MU, £
LEELMEFZH epoch Iniy L, BRU—EMREGT, TELHTHE,

FREX RN FRaF REN—%kE (EEREXN) MEHAKENFE, 7
BT, ENMREERTRHEFS RO THEE. RRRHTE, FHLBEER,
B K AR KT

a) K B # embed, * T /il /7 embed, 7 5K Al 7 embed B9 )7 — WA, BEANFF 5
CAWAE topk HAEF . ERE I, EFHX—3o 2 =0, KM, E7 UE
MG A R A A topk TN . X REY, T LLX S AN 8 K topk. 453E
s g,

b) # 7 3K embed B )T —H ARG, HENHF utiz—MEE 52 embed N & &
WKAFFPESSu (KAESH); BXEM S, K SuTfaflrdteisy i,
FH knn i A\EHF, XENHEKRAT uxt i REWEERN CRETEMS 8 CRiF£
B ), RE RS E W,

i 2 A 70 7 [ B SR s n T

c) ik [ 2 A BUR T Bl B 2 # lightGCN ., 4m it 4 2 58 w4k B 9 2> - ] B lightGCN #Y
27, FEEH b FEEEE £,

-

2.3 AT

AR B & S A AT

BATATY: fiFk, BERMENEEL MIBRETREHRRE, LEREREX
AEEFTENEESARFERGRET HOEE. AIXRAW, AAWEESHEER (MP)
A LightGCN # 2 B H A AF, AEF ARGt T B, 4o BER, KT UE
SHEER LR B NEMHFBE S R, NTREEERR. KETTE: BHEAK
ERANLE, REMLBERA P EME L ANXEREEXREARE 7. EEEE A KA
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FHTFENZREAR, ERRNTUALZEREE EH TR, LRI, 1, A
HEEERCELEALREN, CEFEFRARHES, THFARARET 2THNRFEK,

IR AT : AB KT AM 2R E A& R # BT R & R R F o 908, BT LLE
B % 8 7K 2080 & FHUMR & & Lot ATA A %, K AAAL B B & AR A0 4 B 45 9)| 25 A I 3%
BT FANIR. B, ERFFENFATBEMENELARFRRET ZRAFA
XM EENL L.

SEHRIATE: B RIA B & 3L e oy B B AR P 4 Fu i o R U Ao iRt &, DLR
FENERAEE, BAEENEFEFNRARRA LA ARR, AT AR HA KA
ERFTE, HEGCBENHEATREIRRIE. TEFRZHFTHURNEXEARNFE,
A A #HERERENNEE, X MFERGAH RO EZESE M BEREE. K
R R BEERETEATA L. w21 ¥ oA, dEBTRUHBFTE,
& REKEEWR, LREFGETHANELEERRAIN, FUIIGRNARE
—RKOTREUWNE., wREHN LHAATHREN ML, TIIANLLEE, LNEFHRE
W ERRRER TR

12
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3

4

% IR

MAO K, ZHU J, XIAO X, et al. UltraGCN: Ultra Simplification of Graph Convolutional Networks for
Recommendation[Z]. 2023. arXiv: 2110.15114 [cs.IR].

GAO C,ZHENG Y, LI N, et al. A Survey of Graph Neural Networks for Recommender Systems: Chal-
lenges, Methods, and Directions[Z]. 2023. arXiv: 2109.12843 [cs.IR].

WU L, HE X, WANG X, et al. A Survey on Accuracy-oriented Neural Recommendation: From Collabo-
rative Filtering to Information-rich Recommendation[J/OL]. IEEE Transactions on Knowledge and Data
Engineering, 2022: 1-1. http://dx.doi.org/10.1109/TKDE.2022.3145690. DOI: 10.1109/tkde.2022.31456
90.

GAO C,ZHENG Y, LI N, et al. A Survey of Graph Neural Networks for Recommender Systems: Chal-
lenges, Methods, and Directions[Z]. 2023. arXiv: 2109.12843 [cs.IR].

R R 2R ZH AR E R

4.1 ERH

3H25HZ4 A5 H:

BN REERHEN B E R RS ER, H R CETRBEEZHOEL LM,
T ¥ L.

4 6HZ4HD?2H:

PAT APV L L B, KEHF 0 MHHE, BT ER B KK
BERXERHAS, AHEIF. BXTHE. Fik. ZR%,

421 HE5 H 30 H:

TR X EG M FER, #REBFN. BFRT.
HEEW T FT M AR, w3 R, BERUHAE,

6 A7

TR W XHEAE, FakERR. HRFET.
WA FRPTR B PPT FuvbAs, #EATTUE.

6 A3HE6AS5H:

S A, R\EEHMER2OELAATRENE

6 F +4:

RARA BRI, AR R RS,
Bl X E ¥R R R R
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RE

IA B GCN JLF T3 R 08y TIE 8 2 4 GCN # AT R ¥ B4 AT B 2, GCN
BRYMENESREF RN, HARET FLSWENERE. K0, RINEZERFILIA, &
GCN F F fh &% Wit — B A A B E— W F R B Tt T A B
ERoE, feleeaEnEmT AN EEHFERT #ENER. EXTIEF, &
ITE £E /A GON sikit, FRHEMEEHERATHER K. RITBET —AFHEE, 4
% LightGCN, &+ GCN # & EAWA—ABR&— A THELTIE. BKhE,
LightGCN & i A & W3 A P ot & B R P-4 @ X B H ERZ 3R P A d g,
FREAEFIEWHENNIRAE N RE RN, ZHETE, S EENELER
SEAFYE, FHEZLHEANZREET, B4 THAAEANET GON i FHEE
Neural Graph Collaborative Filtering (NGCF), &3 H T & & 1yt # CF 248 % 5 # 47 16.0%).

BT A4 H7 o SZAE BT AN A L XTI A ] # LightGCN By A B #H AT T 3 —F o471 &
{1187 52 B4 TensorFlow #7 PyTorch # #f ¥ LL3K %,

1 N4

AT EMPA% L GERRR, BERGRY ZHEF UPATIENE BT [7, 45, 46].
BHEAGWZCETMAF ES2 5B HTRE, flnid. o WEFHAWRE,
E e, FELIE (CF) METAHL EEHF -5 R ERZITN, HRZEEZIARA %
i B9 #EARE S [10,19,28,39] CF W& H WA ZF JBERME (B AHN), MUk
AR P A, FETHRANEEHRATN (6, 19], EELIEEZFHN—MHHER, CEER
R P # A ID HZEMA N T [26]. Ek, —LHRLI, HHAF ID EHHRE] %
EAMANHLATHRE, TURERNNRE. Fln, SVD++[25] AT EARA P REG 2 14&
BN P 8T 4 7 BRI AL, T AR 1 TUEALE (NAIS) [18] K4 T RE T £+ 47
GEERM, FAETNY R L T HRETT Rit. ANAFP-MIRREENAZRE, TEK
#EAUMARAR P FTEEM—FEARBR, B —REE—kRERNF .
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2 §|#E

FATE 2B T NGCF[39], X2 — M EA KK MEH EEEHTEZHN AW GON &
A, G RN NGCF #47 7 @At %8, LT NGCF &AM (E 0y 2R M . A 0y 37 3
FEAE T BT % GCNs F F A % Wik, BV R A ME0E, EHETRSER
TR B %

& 2.1 NGCF Fll RPN E PR =AFELE

Gowalla Amazon-Book

recall | ndcg | recall | ndcg

NGCF | 0.1547 | 0.1307 | 0.0330 | 0.0254

NGCF-f | 0.1686 | 0.1439 | 0.0368 | 0.0283

NGCF-n | 0.1536 | 0.1295 | 0.0336 | 0.0258

NGCF-fn | 0.1742 | 0.1476 | 0.0399 | 0.0303

2.1 NGCF g4~

TEWEWE, APy ma 5 — A 1D A X8, Ry i 8 ID # . %), NGCF
FRARAFP-YEXEEREHERAN, BEET:

e = o(Weld) + 3 ———

i, \/IN HN

k“ We +
1 EN: \/|NHN

ERTKBEEEE, AP oS i e, a ZEEUBEBHR, N, AP uXEW
MsmES, N, RrEHS i XEWAFES, W1 W2 28— EHAFEHEN T4
WELHEME, BIEFELE, NGCFHET L+ 1 MERAEHE AP (el B el) fo—A
Wi (el Blel). #h/E, CHBRLEL+ I MAURGRENA P N F B HN, FA
AR A R TN - 4% . NGCF R AR B _E B FR/E#Y GCN [23], @45 6 4F & M W78 B 4K
o(-) FUAFME AL 4R AE M W1 A0 W2, #AT, BATIA K X P Fb 48 (B A2 1 B SR o I AR 28 A

Yk Wale - el)))

Wiel) + Wy(el® - efM)))

18
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EXEETRSERY, 00 HF E G ESCRAEE A N, Pl SCH AT 2L i & 17
H. B, #TLEFAUKBERETHEFT. AT, EWETET, AP -9& X 5HE
HEANTERAE-NIDEIEAN, M4 IDEAEKNEL, EXMHELT, #TL2K
FEARUEHBT 2R TFIEFNRAL; EZEMRENE, CIEm T INEANEE., £
T/, ROTEREZAL 89 L.

2.2 NGCF WEZRBRER

#1174 NGCF #4734 B8 % (ablation studies), it 3E & MBS f B2t B, H
167 7 NGCF #fE# X Ay R #E4T L he, EAH W KEFSFIFEH LT EAT, UA

RERFF LA A P, BT GON MiZ 0 R B R AR RAHEN, RAVE X FEEME RN
AANTHHENRE. B, ROKETHRRLHENG TR, NEE (B et = e]]...[|el"
B kA (Bl er = el + .. +#%omﬁa,ﬁﬁ&%ﬁNmmm&%%mzk,@ﬁT
HH R AT 5 E A GON M Li sk \ R E # a5 R

BATEIN T =A-E L #9 NGCF & 4k

NGCF-f, %% 7 HAE# #5145 [ W, F2 Wyo NGCF-n, #% 7 4F & M #7E B % 0. NGCF-
fn, EERERTHRERBREEREEZERETRIR. TTEREAZK, RNRFAELESHK
(fldn2 3] % ENMF %, dropout th#E 4% ) 5 NGCF M E X EAHE. # (1% Gowalla
A1 Amazon-Book K{E%E FH 4T 2 BEHBEWMER, Nk 1. TUEE, BhiFMiEk (B
NGCF-f) A=A $E%E E#H S % NGCF 89— 2k #. M2 T, BhELERE
FRLAEREFT ERRDH. 4K, WRRINESRISEL L ER EHIRERMERE
(B NGCF-f), Matl B EFRA. ETRUENELER, RINBEUTER: Tk

- . Gowalla . Gowalla - Amazon-Book Amazon-Book
Lo .r*"’ i 1 ":". —— NGCF L e
oz \ ] nms - ——
" \ Y, o I ',I NGCF-n I l/j_ N
¥ aoze \ o r L j— LAYy —— NGCFf ) - P
2 kY B /’ =] LAY ety g sem r T -
Foos \ 2‘ Bama|  \ N Bowo| | T
< —— NGCF { == NGCF £ \\\\ Samms| B a == NGCF
E 026 NGCF-n -.=t «— NGCF-n E a0 a\ﬂxh v | o NGCF-n
e NGCF-f . -— NGCF-f o — fra I’ -~ NGCF-f
- NGCF-fn —=— NGCF-fn R sz i ~— NGCF-fn
DO L T T T T T TEEOD el s -
iz :M H - Hﬂ b = w bt e 133 o1mp ATE o = LS ke lW I_l uﬂ l'.'!
Epoch Ep h Epoch Epoch
(a) Training loss on Gowalla (b) Testing recall on Gowalla () Training loss on Amazon-Book (d) Testing recall on Amazon-Book
5
& 2.1 NGCF HIViIZhih %
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ST BB (27 2 AR 5
% NGCF =4 7 fi @&, %7 NGCF f2 NGCF-n & # B Kh v L ERE T Het; 5
e RS A R R R B 2 R, EERERREERF 2 AR EF . L1
K, FEH R dE A BE A NGCF 4 T A S Al &v, [ i 33 B B #5 Tk w411,
NGCF-fn A8 % T NGCF AR AWt (BEXMAMKHET 957 AT ERAM TR 1 F
KRR S48, HFEMNGCF EXHAMRET AT LAENA, RITVEE 1 44 T10KH)I4
FARFNIR G B RWEA R A&, FUER, NGCF-fn EE ML TR FHIIARAE
. NGCF. NGCF-f ft NGCF-n K% % . 5l E H X g4 —2, RATKA XK %
B K B AL N B AT B H5 E #  . NGCF A7 NGCF-f Z By bR BoR 7 e, R
R BB E B

RAEX LA, RAVEHE®: NGCF G HETIAWE®R, MAELUE. NE
# £V, NGCF By &AERE 7 b NGCF-f £ &, F AHAEEE W1 A0 W2 34 B AL T 7]
DL A E NGCF-f # 2, 4T, LT, NGCF £ HEFHWINAREAMEZHZN
Mg, FEAMBFOMANF—FWE T RERISZMEZNNER, B2, ENER
BT EA R, AT RHBARUARENRENEHEFEE. TN, @& TAKFA
HEER TS ER E AR, M)l %eE, £ERRER A .

3 FE

W— 1 RTT NGCF Z2— % Z H%B{0y GCN A, ATHELIER. AXLLIH
RHAT, RNMNEET AR - HREERAKRNELE EHAF, BT E45 GON A THREH L
AWMER. HEBHANERARE—EZTHE, XN LEZTISGMEF, BALES
T BAAT H L REN ER RN mFF.

EX—HaF, RINEENFRINTHTHEERXEERAEL (LightGCN) E&, 4w
2 e AJE, RATRMA LightGCN #HATREA T, BETREERERITHFENaE M., &
G, BATH R AT A g A AT AR A
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3.1 LightGCN

GCN WA AR B ZE T E F R FRF S W AWET [23,40], A7 ZHX— &,
YHETEARE T RETER, L ENEER AN ERT ANTAT. XHERARE
AR A eV = AGG(el (e 1i e N,})

Prediction

.............

] Layer Combination (weighted sum)

Layer 3
Layer 2
]..nysr l

: Nnrmallzed Sum :

g ®

-1 :r-n
EII!

neighbors of . : nmghbm's nf iy

llght Graph l:onvolutlon lLGC}

Figure 2: An illustration of LightGCN model architecture.
In LGC, only the normalized sum of neighbor embeddings
is performed towards next layer; other operations like
self-connection, feature transformation, and nonlinear
activation are all removed, which largely simplifies GCNs.
In Layer Combination, we sum over the embeddings at each
layer to obtain the final representations.

A 3.1 LGCN BRI HIRRE

AGG R —NMNEABH—HERNBZO—TCERTEHFTEAREGENT ANE k
E%ﬁoﬁﬁlﬁaﬁﬁiTMMy%%GN*%M&*%%%%MH,MWN*%%
SUXBEREBSR, KW, ASBETEAHMAEERERFELMEIES AGG B HH = £ —
B, RECMNERFEMANFEN T L EL) EEHFRIARS, ExTHFELTIET 6
S msE (E 22 T T4

REREER (LGC),

£ LightGCN &, RATKF G20 Ak fo R 628, I R4 fr 4k &l
J& . LightGCN # By E £ MEAME (LB EHAN [39D & XA

el + Walel - el))

k“ a(W e ) 4
' 2; \/|N 7
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Wiel + Wa(el - e)))

k“ We +
' ZN \/|N||N

X BT — 6 T 9 AR GCN[23] ByiRit, © 7 LU &8 \ 5 B S AR (E Ry 38 o il
Whmy W UIEX BN A EMAE, Lk, EELERY, ROKAZIMHE—HE
PEF (442 FHEZHLER),

BERERNE, ELGCF, RN R EENAE, TAEEFTAES (HE&
). REKRLHENAWEEFEN[14,23,36,39,48) 7 F, GHERERELT BANEHTF
ERANEBEEE, TN THUNBHEEAABREAR LHRT 5o EBEMBNRER,
Flt, £#LGC # T HFEEE H&EH.

3.1.1 B4 A FE A W

1 LightGCN #, "e— T JIGWER S EF 0 Zrys N\, BUETA A P 8y 8 Fn g 4
miy e e eflfE, W LL#E I Equation(3) ¥ & X By LGC it E R & ERWH AN, £ K
ELGC 5, &M#t—FH&EERFNEN, WERAF (&) WRELRT:

E akeu E ake

HEiok RTF k BERANAMEARKLARNTFHNEERR. ETUBEAAFHRENES
o, BFEARESE (B, EEAWE [3] 09t #AT BN, ERNALEF,
BMNZIAKEHGREN UK+ BE2FREFOERE. B, KA RTLTA
AR, DA 5 b B33 v LightGCN By B 24 F R HL ) b

BAVE B &S ATH R T XA

Yui = €,64

T RAEE R EF AL DB

3.1.2 EERRK

o HATR B Light GCN WK, UEESHAEA#TLH TE, WA -HRK
FHE [ E X RERJVEXjV, HF M AN S FI &R F e i#i &, 4045 HRUI ¥ 1
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FRubEm i #tATT B, TMA 0. AERNTREG R P-4 e B 0y 405 2 1%

0 R
RT 0

A% 0 EHBAN EO ¢ RIMENXT (17 DLk 15 548 M & 189 LGC & oR:

E(k’-i-l) — (D—O.BAD—O.5)E(I<:)

HEDAEMN) (MHN) X A4, Di £ -2 i1THEOEE. ZEHkllokE—
AN BN AE

E= OéoE(O) -+ OélE(l) + ...+ OCKE(k)

32 HELAT

HATHATHEE 547, LLEBT LightGCN B # Xt H EMAEE. B4, RITREH
. GCN (SGCN) [40] Wy x %, & =& — M R &k GCN A, 4 5 & 5% 5 2| F &M
Hy AT, BT HAT EH 4, LightGCN &4 7 B#EWME, HiL LightGCN T
FEABEMTAMEEE., K5, RANTREEUMEAEEFZ TN (APPNP) [24]
W %%, BHAZIH GON LR, AL PageRank [15] 18 Bl B & LUAR 3T & F 78 9]
B, XA AT E R T LightGCN 5 APPNP Z 8] B 7% £ & 41, [ IR A(1# LightGCN & £
BREBMTEIEFRFOERERNRS. &5, RNH9MTF-ZLGC, EXTE
AT FE R P SR AT R, AT E RN T ## T LightGCN By TEALH

3.2.1 5 SGCN WW# %

o 15 [40] ¥, EF NN GON BT m o R P B E R ERT LR, H4H T SGCN, #
TR LR EEEEH N — PR EEE R GCN. SGCN iy Bl A AR E XA -

E(k-i—l) — (D + [)—O.5(A + I)(D + I)—O.E)E(k:)

HEAHIAEMAERE, UTOM PR T HELS (D+1) " X—F, BHRZEK
g5k N\. £ SGCN #, g — B HE N U T Ko
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EX) = (A4+ NHE¥Y = (A+ 1)KEO E:Qﬁﬁ

REFERHA, EAFHENBEBEIELLEHFRN, AR LEETEEANLGC B
& 45 B SR\ B A AR A

3.2.2 5 APPNP £ %

ERAH—TITAEF [24], 1E#+% GCN 5441 PageRank [15] Bk R ek, N FFE
BAR, #HT —F4 4 APPNP 8y GCN &1k, ALLESHLEFRINR TERKESE., %
Z| /ML PageRank  Bk#5i% T H9 8 %, APPNP B G ML E 5 R (BIE 0 24
N #ATANE, XA LLCPHERE BHENE R BIRFEART AURELE TR fA|
A4 B2 BHIE K. APPNP # M3 B = X k-

E®Y = BE(0) + (1 — B)AE®

b B RBHEAE P HRYREEENEBME, A k7T —(LWATESEE, &
APPNP ¥, & /5—ER TH&LHIM, BF

EX) = BE(0)+(1—B)AE* Y = BE(0)+(1-B8)AEO+(1—6)?A2EE -2 = BE(0)+(1-B8)AEV+.. +

RITUEE], wRF—ARP v EERAP uARRAHRL, HlayduFEE
b RBORR (BIA 0):

1 1
RARBAMLYTHBN: E_NAE VI uBHEUTERARE: ) £XEARE
MIMEHE, ZHEM LB A; 2) £RXETMEWRATE, RATEMK (BE KL
RAPAMARE) BB A 3) viERE, EREBRPHAK, XHATHEEERST
HAAT W E LT E AP AR R [2,37), HIEH T LightGCN WA E M, &T
LightGCN By xR ., AR DA I E 77 i #AT 2% L8y A
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3.3 A%

LightGCN B[ 428X A% 0 BEos N, BliEaiEin, HA S &L F SIREEE
# (MF) #F. RATEA N4 (BPR) #4% [32], X2 —FEHL, S5
W B A& HE TN E T AW EZ 2 A& H

M
Lppr = — Z Z Z Ino (Yui — Yuj) + >‘||E(0)||2

u=14i€N, j¢N,

Ho o EH L2 ENATERE . RATKA Adam [22] &, FUAHEFRERAE. &
1750 38 70 HoAt 1 28 9 57K BF 52 6 ¥ B < TR ¥ LightGON B4R, HodmBE FOR A% [31] A xd
RG], BTXARRIENEL, FIURMNEINT BEFSE R,

FEIEEWNA, ®A1%EF TN GCN #1 NGCF # & Jf # dropout #L#|. & F & 7% Light-
GON F KATR A MR B EAEE, BN Z#HAT L2 ERst 2 LB BT 4
X B7R T LightGCN fa 2 # #h % & th NGCF ¥ & 7 )l 4 fn i %,

R 3.1 ERPARMSTHE
Dataset User # | Item # | Interaction # | Density

Gowalla 29858 | 40981 1027370 0.00084

Yelp2018 31668 | 38048 1561406 0.00130

Amazon-Book | 52643 | 91599 2984108 0.00062

4 K

B, RNERAZRIZE, REESF 42 %+ 5 NGCF [39] #ATHFEALE, X£5
LightGCN RAEXEE AWk, BTk, RITVER 43 H SRR LS FHHTH
o A TIL¥A LightGCN 8% it, FHETEFRERREE, KAES 4.4 7 AT HEGT
RGN &G, EFASTFRETTREHHE,
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4.1 SHERE

5 NGCF H8 [, # A% B A S A A E E N 64, 3 Hi A\ 5 4% F Xavier 77 #% [12]
HATH . FATEF Adam [22] {44 LightGCN, F- F BRI\ B % 3] £ 0.001 F2 BRI\ HY /I
## A/ 1024 (F£ Amazon-Book £, FATH/NLE A/NEAnE] 2048 D4R =% Z), L2 IE
MRS ANEREEA (-6, le-5, le2), EALZHEFENT, REMEN led, BASR
BB REHKZEH. HMNELF4EEANRKK, Y KET 30T UKRESLAH
TR, FHIZ L RER e 5 NGCF A, % & T, LightGCN Y81 AT % #9 epoch
$ 4 1000, FA1H7 523, 7 TensorFlow6 #1 Pytorch |+ #[74 .

Table 3: Performance comparison between NGCF and LightGCN at different layers.

Dataset Gowalla Yelp2018 Amazon-Book
Layer # | Method | recall | ndcg recall | ndcg recall ] ndcg

1Layer _NGCF 0.1556 0.1315 0.0543 0.0442 0.0313 0.0241
LightGCN | 0.1755(+12.79%) | 0.1492(+13.46%) | 0.0631(+16.20%) | 0.0515(+16.51%) | 0.0384(+22.68%) | 0.0298(+23.65%)

2 Layers _,\TGCF 0.1547 0.1307 0.0566 0.0465 0.0330 0.0254
LightGCN | 0.1777(+14.84%) | 0.1524(+16.60%) | 0.0622(+9.89%) | 0.0504(+8.38%) 0.0411(+24.54%) | 0.0315(+24.02%)

3 Layers _,\TGCF 0.1569 0.1327 0.0579 0.0477 0.0337 0.0261
LightGCN | 0.1823(+16.19%) | 0.1555(+17.18%) | 0.0639(+10.38%) | 0.0525(+10.06%) | 0.0410(+21.66%) | 0.0318(+21.84%)

4 Layers NGCF 0.1570 0.1327 0.0566 0.0461 0.0344 0.0263
LightGCN | 0.1830(+16.56%) | 0.1550(+16.80%) 0.064%9(+14.58%) | 0.0530(+15.02%) | 0.0406(+17.92%) | 0.031%(+18.92%)

“The scores of NGCF on Gowalla and Amazon-Book are directly copied from Table 3 of the NGCF paper (hitps://arxiv.org/abs/1905.08108)

- Gowalla Gowalla - i Amazon-Book Amazon-Book
| LightGCM ais gt n e | LightGCN _— et
aas NGCF "I" 004 || NGCF
P | a1 ; 0 | P
a0s o o
3 \ ol / $ 0.0 I', & eosey  f il
T o ’ I B Fi o
c oo | = £ \ = -
' \ \ i ¢ ‘E oae \ 1§ wnz2 |
Eoaazy . By | ‘B \ o
= / _ = \ S| _
ol aed |l LightGCN ] N LightGCN
R | NGCF —— ~ soad | NGCE
PR , ] \ .08 ek . . . Lo 000 4 . . . . . P
o H 1] 4 -] aao L] 4 4ao0 - L] a Ee- - H-1 34 a0 00 ] 102 o 1] 400 00
Epoch Epoch Epoch Epoch

Figure 3: Training curves of LightGCN and NGCF, which are evaluated by training loss and testing recall per 20 epochs on
Gowalla and Amazon-Book (results on Yelp2018 show exactly the same trend which are omitted for space).

B 4.1

42 HFERHZHE

#A15 NGCF #1T T A LI, £k 4 PIDRT AR EKR (131 4) Wk, SHET
T EMER SRR TR, HN#H—F 2 TINABRKFNRE DEH) Sk,
Bl 3 Bror, LUES LightGON Wt # B BB TSR, TENELER W T: EFFE
JUT, LightGCN By 1# gE#8 K 1@ 8 T NGCF. fl4n, 7 Gowalla I, NGCF 1 >C # #t & #y %
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Table 4: The comparison of overall performance among
LightGCN and competing methods.

Dataset Gowalla Yelp2018 Amazon-Book
Method recall mndecg | recall ndeg | recall ndeg
MNGCF 0.1570 0.1327 00579 0.0477 00344 00263
Mult-VAE 0.1641 0.1335 00554 0.0450 0.0407 00315
GEMF 0.1477 0.1205 0.0571 0.0462 0.0354 00270
GEMF-norm | 0.1557 01261 00561 0.0454 00352 00269
LighlGCN 0.1830 0.1554  0.0649 0.0530 | 0.0411 0.0315

B 4.2

B A EE X 0.1570, T H&KAT89 LightGCN £ 4 2% E T 7 LLiA %] 0.1830, & H 16.56%. 7
AKEEL, FHEEEEST 16.52%, ndeg 125 7 16.87%, X LB #HME LY T F, K&
4 5% 2wk 1 #HATA, AT LLE 2| LightGCN H NGCF-fn %3 ¥ %, NGCF-fn
& NGCF &K, £k 7T HAE#Ef L BiE. & T NGCF-fn 7745 & 4 tt LightGCN £
ZHBRME (Plin, BEsE, EESRFAFPEANREHENZANZELURER), Xk
BF ix 4% fE % T NGCF-fn o[ RER LA M. Hiw BB T U EMaE, Edam#Em. —&
MELERR, BEHNO (B AR, RN (39D ¥wa| 1 7 LUK & A8 M bk
", FEHEAZHERT, £A3ETURBEAAFHEENER. XNMAELERE NGCF
HEI—2. EYIALREF, LightGCN 4K FRMMYI A K, L&A LightGCN H,
NGCF E 4 E m T YA #HE. wsh, BB AR K R0y EFmnbRes#E, &
BH LightGCN EH 58 AWy iz L ek /1. #8 X, NGCF #9435 1| 45 451 Sk Fn 5 % v 7 14 R Bk
B ERE—NEEHANTRER. HEE, EEFRNBETT AR TEEREZSH
BETWII AL, REH I NGCF #h% > 7] LR E )4k (F ZM®/T LightGCN
HERKD, ENRE BE T ERE, FHh U7 AREERI%EH KR 2K E NGCF #
WA BRI TR,

43 SIREARWEELEK

RKADRT EREFENBRLER. RIOVBRTTEMFTETURENRERS . AT
A LAE R, LightGCN EFTA =AM HEE EHARTHM T E, ErT EmBEEEm
Gt HEE, LightGCN 7 LUE 1 F 2 (LE 4 WHEHR) #— P, Eax ER
MREAG— R BB S ERE, £EL7EF, Mult-VAE RILEREB AR, (£ T
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GRMF #2 NGCF. GRMF £ 8t 5 NGCF #-F, T MF, X&B T AH a7 A &
8 T B BR324 R T OF AL 8 R w3 — 4k, GRMF-norm % Gowalla
T GRMF, {E7 Yelp2018 #7 Amazon-Book _t % % # & F17 4 4 .

4.4 WHEEFH R ELHT

KATE T PR EH A AT AR sqrt V3 — 6t 7 528 1 B ok 54T LightGCN Hy v 84T %,
PAIEBA LightGCN £ 4 323 TR T A E M, KNI —PHR T RN THRENFTH, X
#& LightGCN A & M i x 2 R FH .

4.4.1 BHAWEH

B4 17 LightGCN & £ 4 1K LightGCN-single ¥4 &, & T~ H 244 (BN, *F
T K E# LightGCN, £/ E(k) #HATHRETMND . T ZERH, RAZEHET Yelp2018 &
%R, ©¥5 Amazon-Book M E HAH M., RATE =AEENEZLER: X iE LightGCN-single,

— Gowalla E Gowalla ) Amazon-Book Amazon-Book
= . R oass a.048
. LightGCN aar{ mm LightGCN = LightGCN . LightGCN
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Figure 4: Results of LightGCN and the variant that does not use layer combination (i.e., LightGCN-single) at different

H

layers

on Gowalla and Amazon-Book (results on Yelp2018 shows the same trend with Amazon-Book which are omitted for space).

Table 5: Performance of the 3-layer LightGCN with different Table 6: Smoothness loss of the embeddings learned by

choices of normalization schemes in graph convolution. LightGCN and MF (the lower the smoother).
Dataset Gowalla Yelp2018 Amazon-Book Dataset Gowalla | Yelp2018 | Amazon-book
Method recall ndeg | recall ndeg | recall ndeg Smoothness of User Embe ddings
LightGCN-L;-L | 0.1724 01414 | 00630 0.0511 | 0.0419 0.0320 MF 154493 162582 380342
LightGCN-Li-R | 01578 01348 | 00587  0.0477 | 00334  0.0259 LightGCN-single | 128727 100917 321911
LightGUN-Ly 0.159  0.1319 | 0.0573 0.0465 | 0.0361  0.0275 -
LightGCN-L 01589 01317 | 0.0619 00509 | 0.0383 00299 Smoothness of Item Embeddings
LightGCN-R 0.1420  0.1156 | 0.0521 0.0401 | 00252  0.019 MF 12106.7 16632.1 28307.9
LightGCN 0.1830 0.1554 | 0.0649 0.0530 | 0.0411 0.0315 LightGCN-single | 5829.0 6459.8 16866.0

Method notation: -L means only the left-side norm is used, -R means only
the right-side norm is used, and -L; means the L; norm is used.

K& 4.3

BMNANELEREZHA 1P 4 EREGE TR EASZKFRT, BEREF2E,
FRARTEEE 4 ZORER. XRFAEH —Hifn <0 EF 77T KB AT CF 3
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FHEA, BEREFEAEENAER 2B EFHEM. X LightGCN, RATZ I HM &
WEEHRB T AN R, BNEFEA 4 B, LightGCN B gt 74 T, XifBH T 24
B AERR I IR T B R A, EWRATESR 322 1 F A AR A (5 APPNP 8
* R, R FM A E, RA1%AH LightGCN £ Gowalla £ — & £ T LightGCN-single, 12
1 Amazon-Book # Yelp2018 | 71~ & 4wn i,

45 BERLH

Lo LightGCN M A THBE &R, BT RENESEFIEZN, REEWNESH
TRENE L2 ENM R %A, ERXE, RITEET LightGCN # g E 1L,

W 5 Broc, LightGON A A0 A @R ——BI % X & 0, LightGCN 1744 T
NGCF, E# 7 sMERA T 7 k1 B4 89 dropout[8]. X % B LightGCN 1~ A 2 5 i il & ——
A % 7 LightGCN # ¥ — T I A5 52 0 BEW ID %\, BMEA 5 T4 F EN, X
T Yelp2018. Amazon-Book 2 Gowalla, #EE 2 A% le-3. le-d4 F1 le-d. L AT le-3
Bf, AR T, XRALBNENNLSNERGEEINE £ G EEW, THBE.

omas

LT

ndeg@20

ogzs

recall@20
a s 8B 8 8 8
H [

20 —— Yelp2018 08201 —— Yelp2018
= - Amazon-Book oo - Amazon-Book

a2 1e2 ) laE  is2 led 1e3 el

= Re:;?lari:];t;ion Ret-jula.ri:a‘tian
Figure 5: Performance of 2-layer LightGCN w.r.t. different
regularization coefficient A on Yelp and Amazon-Book.
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Hiwy CF A - (MF) [26,32] ¥ A P (F4d) WWID RPN HEAREF . RALT
A 4 4 AL 4 NCF [19] A7 LRML [34] &£ H A F By sx N fF, E@T s W EET
REEHE,

BT MEA IDfERZS, F—F CFHEEREHE Wbl AP HIAAHE, UE
WHETRH P . Flin, FISM [21] A2 SVD++ [25] B8 7 = 47 & ID # N\ 8 im A F 2446 4 H
R P EHEN. mE, FRARTRE D EY f 3t B AN AKEBE TR TR Ak, 7l
N T AR RAEIREAN 7 £ 4 &% B 1B SUmk, e ACF [3] 72 NAIS[18], L E#%¥ 3 &
MhemeEER, SELERLEHRAARA -8 —MEE, WERA T UEE T
R # AR A R —— B —BR4RE— X F B TR RN FE T .

52 RATFHEREWEF®

B —HRARWOHREENRR P-4 6 B 3T . FHE9% 4 40 ItemRank [13],
ERAREEHENN EEEER LEEHA P R 28, WEBEEn T B aNmTeE. %

TEANEZ % (GNNs) ERBEEEM TERIALE, LtEZENAE, LiESH&
N3] [14,23], BEAA R A G EE X EER, L iiFEL# (1] FTHE X £
5 [8], X FEFEF KA. Gk, GraphSage [14] #2 GON [23] 7& =5 | 3% + E 37 £ X
THER, WRAGENHFANURNCERT EHNHEAN. i THETHEEEERM, vl
% /1 GNNs BRAT AR, FREZEA [11,29,47). %5 TEEREEA, RAKE A
%1 NGCF [39]. GC-MC [35] # PinSage [45] % GCN A A T Al -1 & 2L B E, #HhEH +
& M4k B CF 55

AR —RE, —SLRHAWE A H GNNs =RE T K20 LA (24, 27, 40], X 20472
B & 7 #A17F & LightGCN. 4 7|2, Wu % A [40] I\ GCN 8y B Z M & T 0 ey, &
M e Bt IR £ M E RS A9 O — AN LB GCN (SGCND) A, — AN EX A2
IgmmNﬁymN%%KE%&%%ﬁ%,H%ﬁﬂﬁ%%%ﬁ%&%ﬁoi%%%,
SGCN Z A T ank, B Ak SEA = HEEARE, AT, LightGCN &
ATHERE (CH), R+ T ERAE - IDEHE. B, RIFTEHEZA ERIW
FREE: EEAMEMREEES CFRAEEL AW, EE4PHEARILE, ¥ TH AL
EFME, SGCN 5 GCN A5 CHE £ 85). i 4T CF ##4, LightGCN th GCN E #1145 %
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(#8*%fF NGCF ®£& 7 #iL 15%). &/, [F—BEPETH 7 — T ITIE [4] 5 H T NGCF
FAMEWAE LM, FIFAT &M% GON A F T CF., #thz T, #FAI# LightGCN ¥ 3#
— 5 —FMNMB T A LA 5%, WREZT IDHA, FEAEE MF —#F 2,

6 HRERRTH

FEXRIAEF, RAVLIET GCNs EWFE TR F R T A, #TT7ERHARTKIE
B — W& . #A1RE T LightGCN, vHANERAEHAR—RERZELERFZHE,
HEREFEERF, RMNEF T HERRAERMRE—XZ GCNs FHH MrgR1E,
BART#EWE LT NEEE, EEHET, RNETANRKERNMNEN LI EH
N, ERTRE T BEEENRR, AR TEALEFE. RNBTEZRRET
LightGCN Wit %: EAZ %, EFmz bt T mER K.

#1148 15 LightGCN My WAE X R R A W L R B A B RMEF . W& SLF7 L f o 45
BEEHENE R, ETEHNEN AP REERREERE, &L HHF R HTINER + 24K
ZHEMBWAR, v TRABEXRANEAREZIFAE (WHFLHEN[17,33D =%
Aty Hlan, REHEHBEAFBEEL, Wi hriRE [38]. 1K M4 [41] 715 HKA
7 [44) I TH#%, H¥ GCNs AR T HHUBEAKTF, A, XLEALTREIES
NGCF gl e B2, [H 4 F P-4 B E b 2B ITAR B B E R E g, X S F &
RETSEE, KA R A LA R % LightGON B9 B8, 7 — Kk 87 |2 A
FHAEME a, WENTEWAF W EENITFFE (A, HEAFTEFEES X
B4 EnGES, MERKAFPFEED), &5, RAK#*—FHiT LightGCN # £ 1y
h, FREBEETRANRERATEREGHFE, AREATELT LT E.

. R Bing Wu. Jianbai Ye #7 Yingxin Wu # LightGCN #y 52 2, Fn B # 7 L 64 37
Bo RITIERET FEERARAFES (61972372, UI9A2079. 61725203) HI X #.
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ABSTRACT CCS CONCEPTS

Graph Convolution Network (GCN) has become new state-of-
the-art for collaborative filtering. Nevertheless, the reasons of
its effectiveness for recommendation are not well understood.
Existing work that adapts GCN to recommendation lacks thorough
ablation analyses on GCN, which is originally designed for graph
classification tasks and equipped with many neural network
operations. However, we empirically find that the two most
common designs in GCNs — feature transformation and nonlinear
activation — contribute little to the performance of collaborative
filtering. Even worse, including them adds to the difficulty of
training and degrades recommendation performance.

In this work, we aim to simplify the design of GCN to
make it more concise and appropriate for recommendation. We
propose a new model named LightGCN, including only the most
essential component in GCN — neighborhood aggregation — for
collaborative filtering. Specifically, LightGCN learns user and
item embeddings by linearly propagating them on the user-item
interaction graph, and uses the weighted sum of the embeddings
learned at all layers as the final embedding. Such simple, linear,
and neat model is much easier to implement and train, exhibiting
substantial improvements (about 16.0% relative improvement on
average) over Neural Graph Collaborative Filtering (NGCF) — a
state-of-the-art GCN-based recommender model — under exactly
the same experimental setting. Further analyses are provided
towards the rationality of the simple LightGCN from both analytical
and empirical perspectives. Our implementations are available in
both TensorFlow! and PyTorch?.

“Meng Wang is the corresponding author.
!https://github.com/kuandeng/Light GCN
2https://github.com/gusye1234/pytorch-light-gen
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1 INTRODUCTION

To alleviate information overload on the web, recommender system
has been widely deployed to perform personalized information
filtering [7, 45, 46]. The core of recommender system is to predict
whether a user will interact with an item, e.g., click, rate, purchase,
among other forms of interactions. As such, collaborative filtering
(CF), which focuses on exploiting the past user-item interactions to
achieve the prediction, remains to be a fundamental task towards
effective personalized recommendation [10, 19, 28, 39].

The most common paradigm for CF is to learn latent features
(a.k.a. embedding) to represent a user and an item, and perform
prediction based on the embedding vectors [6, 19]. Matrix
factorization is an early such model, which directly projects the
single ID of a user to her embedding [26]. Later on, several research
find that augmenting user ID with the her interaction history as
the input can improve the quality of embedding. For example,
SVD++ [25] demonstrates the benefits of user interaction history
in predicting user numerical ratings, and Neural Attentive Item
Similarity (NAIS) [18] differentiates the importance of items in
the interaction history and shows improvements in predicting
item ranking. In view of user-item interaction graph, these
improvements can be seen as coming from using the subgraph
structure of a user — more specifically, her one-hop neighbors — to
improve the embedding learning.

To deepen the use of subgraph structure with high-hop
neighbors, Wang et al. [39] recently proposes NGCF and achieves
state-of-the-art performance for CF. It takes inspiration from the
Graph Convolution Network (GCN) [14, 23], following the same
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propagation rule to refine embeddings: feature transformation,
neighborhood aggregation, and nonlinear activation. Although
NGCF has shown promising results, we argue that its designs
are rather heavy and burdensome — many operations are directly
inherited from GCN without justification. As a result, they are not
necessarily useful for the CF task. To be specific, GCN is originally
proposed for node classification on attributed graph, where each
node has rich attributes as input features; whereas in user-item
interaction graph for CF, each node (user or item) is only described
by a one-hot ID, which has no concrete semantics besides being
an identifier. In such a case, given the ID embedding as the input,
performing multiple layers of nonlinear feature transformation —
which is the key to the success of modern neural networks [16]
— will bring no benefits, but negatively increases the difficulty for
model training.

To validate our thoughts, we perform extensive ablation studies
on NGCF. With rigorous controlled experiments (on the same data
splits and evaluation protocol), we draw the conclusion that the
two operations inherited from GCN — feature transformation and
nonlinear activation — has no contribution on NGCF’s effectiveness.
Even more surprising, removing them leads to significant accuracy
improvements. This reflects the issues of adding operations that
are useless for the target task in graph neural network, which not
only brings no benefits, but rather degrades model effectiveness.
Motivated by these empirical findings, we present a new model
named LightGCN, including the most essential component of
GCN — neighborhood aggregation — for collaborative filtering.
Specifically, after associating each user (item) with an ID embedding,
we propagate the embeddings on the user-item interaction graph
to refine them. We then combine the embeddings learned at
different propagation layers with a weighted sum to obtain the final
embedding for prediction. The whole model is simple and elegant,
which not only is easier to train, but also achieves better empirical
performance than NGCF and other state-of-the-art methods like
Mult-VAE [28].

To summarize, this work makes the following main contributions:

o We empirically show that two common designs in GCN,
feature transformation and nonlinear activation, have no
positive effect on the effectiveness of collaborative filtering.

e We propose LightGCN, which largely simplifies the model
design by including only the most essential components in
GCN for recommendation.

o We empirically compare LightGCN with NGCF by following
the same setting and demonstrate substantial improvements.
In-depth analyses are provided towards the rationality of
LightGCN from both technical and empirical perspectives.

2 PRELIMINARIES

We first introduce NGCF [39], a representative and state-of-the-art
GCN model for recommendation. We then perform ablation studies
on NGCF to judge the usefulness of each operation in NGCF. The
novel contribution of this section is to show that the two common
designs in GCNs, feature transformation and nonlinear activation,
have no positive effect on collaborative filtering.

Table 1: Performance of NGCF and its three variants.

‘ Gowalla ‘ Amazon-Book
‘ recall ndcg ‘ recall ndcg
NGCF 0.1547  0.1307 | 0.0330  0.0254
NGCF-f 0.1686  0.1439 | 0.0368  0.0283
NGCF-n | 0.1536 0.1295 | 0.0336  0.0258
NGCF-fn | 0.1742  0.1476 | 0.0399  0.0303

2.1 NGCEF Brief

In the initial step, each user and item is associated with an ID
embedding. Let e(O) denote the ID embedding of user u and e(o)
denote the ID embedding of item i. Then NGCF leverages the user-
item interaction graph to propagate embeddings as:

eSAkH) = U(Wle Z

iENy, NuHM

Wiel + W(el 0 ef)).

(k+1) _ k) , (k) ) o elk)
e Wiel + > ————=(Wie;’ + Wa(e, ).
! ( ueN; V Nu”Nl )
(1)
where e( ) and e(k) respectively denote the refined embedding of

user u and item i after k layers propagation, o is the nonlinear
activation function, NV, denotes the set of items that are interacted
by user u, Nj denotes the set of users that interact with item i,
and W7 and W3 are trainable weight matrix to perform feature
transformation in each layer. By propagating L layers NGCF obtains

L + 1 embeddings to describe a user (eS,D) eﬁ,l), .

(ego)’ <i1), e (L)) It then concatenates these L + 1 embeddings to
obtain the ﬁnal user embedding and item embedding, using inner
product to generate the prediction score.

NGCF largely follows the standard GCN [23], including the use
of nonlinear activation function o(-) and feature transformation
matrices W and W3. However, we argue that the two operations
are not as useful for collaborative filtering. In semi-supervised
node classification, each node has rich semantic features as input,
such as the title and abstract words of a paper. Thus performing
multiple layers of nonlinear transformation is beneficial to feature
learning. Nevertheless, in collaborative filtering, each node of user-
item interaction graph only has an ID as input which has no
concrete semantics. In this case, performing multiple nonlinear
transformations will not contribute to learn better features; even
worse, it may add the difficulties to train well. In the next subsection,
we provide empirical evidence on this argument.

ey >) and an item

2.2 Empirical Explorations on NGCF

We conduct ablation studies on NGCF to explore the effect of
nonlinear activation and feature transformation. We use the codes
released by the authors of NGCF?, running experiments on the
same data splits and evaluation protocol to keep the comparison as
fair as possible. Since the core of GCN is to refine embeddings by
propagation, we are more interested in the embedding quality under
the same embedding size. Thus, we change the way of obtaining

= el e to

final embedding from concatenation (i.e., e},
sum (ie., e}, = e(o) -+ e(uL) ). Note that this change has little effect

Shttps://github.com/xiangwang1223/neural_graph_collaborative_filtering
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Figure 1: Training curves (training loss and testing recall) of NGCF and its three simplified variants.

on NGCF’s performance, but makes the following ablation studies
more indicative of the embedding quality refined by GCN.
We implement three simplified variants of NGCF:

NGCF-f, which removes the feature transformation matrices Wy
and Wa.

NGCF-n, which removes the non-linear activation function o.
NGCF-fn, which removes both the feature transformation
matrices and non-linear activation function.

For the three variants, we keep all hyper-parameters (e.g.,
learning rate, regularization coefficient, dropout ratio, etc.) same as
the optimal settings of NGCF. We report the results of the 2-layer
setting on the Gowalla and Amazon-Book datasets in Table 1. As
can be seen, removing feature transformation (i.e., NGCF-f) leads
to consistent improvements over NGCF on all three datasets. In
contrast, removing nonlinear activation does not affect the accuracy
that much. However, if we remove nonlinear activation on the basis
of removing feature transformation (i.e., NGCF-fn), the performance
is improved significantly. From these observations, we conclude
the findings that:

(1) Adding feature transformation imposes negative effect on
NGCEF, since removing it in both models of NGCF and NGCF-n
improves the performance significantly;

(2) Adding nonlinear activation affects slightly when feature
transformation is included, but it imposes negative effect when
feature transformation is disabled.

(3) As a whole, feature transformation and nonlinear activation
impose rather negative effect on NGCF, since by removing them
simultaneously, NGCF-fn demonstrates large improvements over
NGCF (9.57% relative improvement on recall).

To gain more insights into the scores obtained in Table 1 and
understand why NGCF deteriorates with the two operations, we
plot the curves of model status recorded by training loss and testing
recall in Figure 1. As can be seen, NGCF-fn achieves a much lower
training loss than NGCF, NGCF-f, and NGCF-n along the whole
training process. Aligning with the curves of testing recall, we
find that such lower training loss successfully transfers to better
recommendation accuracy. The comparison between NGCF and
NGCF-f shows the similar trend, except that the improvement
margin is smaller.

From these evidences, we can draw the conclusion that
the deterioration of NGCF stems from the training difficulty,
rather than overfitting. Theoretically speaking, NGCF has higher
representation power than NGCF-f, since setting the weight
matrix Wy and W to identity matrix I can fully recover

the NGCF-f model. However, in practice, NGCF demonstrates
higher training loss and worse generalization performance than
NGCF-f. And the incorporation of nonlinear activation further
aggravates the discrepancy between representation power and
generalization performance. To round out this section, we claim
that when designing model for recommendation, it is important
to perform rigorous ablation studies to be clear about the impact
of each operation. Otherwise, including less useful operations will
complicate the model unnecessarily, increase the training difficulty,
and even degrade model effectiveness.

3 METHOD

The former section demonstrates that NGCF is a heavy and
burdensome GCN model for collaborative filtering. Driven by
these findings, we set the goal of developing a light yet effective
model by including the most essential ingredients of GCN for
recommendation. The advantages of being simple are several-
fold — more interpretable, practically easy to train and maintain,
technically easy to analyze the model behavior and revise it towards
more effective directions, and so on.

In this section, we first present our designed Light Graph
Convolution Network (LightGCN) model, as illustrated in Figure 2.
We then provide an in-depth analysis of LightGCN to show the
rationality behind its simple design. Lastly, we describe how to do
model training for recommendation.

3.1 LightGCN

The basic idea of GCN is to learning representation for nodes by
smoothing features over the graph [23, 40]. To achieve this, it
performs graph convolution iteratively, i.e., aggregating the features
of neighbors as the new representation of a target node. Such
neighborhood aggregation can be abstracted as:

ek - AcG(e®, (e i e M) )

The AGG is an aggregation function — the core of graph convolution
— that considers the k-th layer’s representation of the target node
and its neighbor nodes. Many work have specified the AGG, such
as the weighted sum aggregator in GIN [42], LSTM aggregator in
GraphSAGE [14], and bilinear interaction aggregator in BGNN [48]
etc. However, most of the work ties feature transformation or
nonlinear activation with the AGG function. Although they perform
well on node or graph classification tasks that have semantic input
features, they could be burdensome for collaborative filtering (see
preliminary results in Section 2.2).
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Figure 2: An illustration of LightGCN model architecture.
In LGC, only the normalized sum of neighbor embeddings
is performed towards next layer; other operations like
self-connection, feature transformation, and nonlinear
activation are all removed, which largely simplifies GCNs.
In Layer Combination, we sum over the embeddings at each
layer to obtain the final representations.

3.1.1  Light Graph Convolution (LGC). In LightGCN, we adopt the
simple weighted sum aggregator and abandon the use of feature
transformation and nonlinear activation. The graph convolution
operation (a.k.a., propagation rule [39]) in LightGCN is defined as:

(k+1) _ D 1 (k)
e = —_—e.,
Y& INGVING )
SlkrD) _ 1 oo

! Z/\:/ VINIVING

1

VINGVINi|
of standard GCN [23], which can avoid the scale of embeddings

increasing with graph convolution operations; other choices can
also be applied here, such as the L; norm, while empirically we
find this symmetric normalization has good performance (see
experiment results in Section 4.4.2).

It is worth noting that in LGC, we aggregate only the connected
neighbors and do not integrate the target node itself (i.e., self-
connection). This is different from most existing graph convolution
operations [14, 23, 36, 39, 48] that typically aggregate extended
neighbors and need to handle the self-connection specially.
The layer combination operation, to be introduced in the next
subsection, essentially captures the same effect as self-connections.
Thus, there is no need in LGC to include self-connections.

The symmetric normalization term follows the design

3.1.2  Layer Combination and Model Prediction. In LightGCN, the
only trainable model parameters are the embeddings at the 0-th
layer, i.e., e(l?) for all users and e(io) for all items. When they are
given, the embeddings at higher layers can be computed via LGC
defined in Equation (3). After K layers LGC, we further combine the
embeddings obtained at each layer to form the final representation

of a user (an item):
K K
k k
e, = E akegl); e = E ake(i ), (4)
k=0 k=0

where @ > 0 denotes the importance of the k-th layer embedding
in constituting the final embedding. It can be treated as a hyper-
parameter to be tuned manually, or as a model parameter (e.g.,
output of an attention network [3]) to be optimized automatically.
In our experiments, we find that setting ¢y uniformly as 1/(K + 1)
leads to good performance in general. Thus we do not design
special component to optimize a., to avoid complicating LightGCN
unnecessarily and to keep its simplicity. The reasons that we
perform layer combination to get final representations are three-
fold. (1) With the increasing of the number of layers, the embeddings
will be over-smoothed [27]. Thus simply using the last layer is
problematic. (2) The embeddings at different layers capture different
semantics. E.g., the first layer enforces smoothness on users and
items that have interactions, the second layer smooths users (items)
that have overlap on interacted items (users), and higher-layers
capture higher-order proximity [39]. Thus combining them will
make the representation more comprehensive. (3) Combining
embeddings at different layers with weighted sum captures the
effect of graph convolution with self-connections, an important
trick in GCNs (proof sees Section 3.2.1).

The model prediction is defined as the inner product of user and
item final representations:

s T
Gui = eyei, ©)
which is used as the ranking score for recommendation generation.

3.1.3  Matrix Form. We provide the matrix form of LightGCN to
facilitate implementation and discussion with existing models. Let
the user-item interaction matrix be R € RM*N where M and N
denote the number of users and items, respectively, and each entry
Ry; is 1 if u has interacted with item i otherwise 0. We then obtain
the adjacency matrix of the user-item graph as

A-fr ) ©
Let the 0-th layer embedding matrix be EO ¢ RMN)XT 'where T
is the embedding size. Then we can obtain the matrix equivalent
form of LGC as:

E®D — (D2 AD"2)ER), @)
where D is a (M + N) X (M + N) diagonal matrix, in which each entry
D;; denotes the number of nonzero entries in the i-th row vector
of the adjacency matrix A (also named as degree matrix). Lastly,
we get the final embedding matrix used for model prediction as:

E= aoEw) + a1E(1) + azE(Z) +ot aKE<K)

. . . ®)
= @EQ + g AEO 4 uA’EQ 4 .+ o AKEO),

where A = D" AD™? is the symmetrically normalized matrix.

3.2 Model Analysis

We conduct model analysis to demonstrate the rationality behind
the simple design of LightGCN. First we discuss the connection
with the Simplified GCN (SGCN) [40], which is a recent linear
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GCN model that integrates self-connection into graph convolution;
this analysis shows that by doing layer combination, LightGCN
subsumes the effect of self-connection thus there is no need for
LightGCN to add self-connection in adjacency matrix. Then we
discuss the relation with the Approximate Personalized Propagation
of Neural Predictions (APPNP) [24], which is recent GCN variant
that addresses oversmoothing by inspiring from Personalized
PageRank [15]; this analysis shows the underlying equivalence
between LightGCN and APPNP, thus our LightGCN enjoys
the sames benefits in propagating long-range with controllable
oversmoothing. Lastly we analyze the second-layer LGC to show
how it smooths a user with her second-order neighbors, providing
more insights into the working mechanism of LightGCN.

3.2.1 Relation with SGCN. In [40], the authors argue the
unnecessary complexity of GCN for node classfication and propose
SGCN, which simplifies GCN by removing nonlinearities and
collapsing the weight matrices to one weight matrix. The graph
convolution in SGCN is defined as*:

ECD - (D + 1" 7(A + I)(D + )3 EW), )
where I € RIM+N)X(M+N) s oy identity matrix, which is added on
A to include self-connections. In the following analysis, we omit the
(D + I)'% terms for simplicity, since they only re-scale embeddings.

In SGCN, the embeddings obtained at the last layer are used for
downstream prediction task, which can be expressed as:

E® = (A +DEK-D = (A + DKE©
= (K)E<°> + (K)AE(°> + (K)AZE(O) - (K)AKE(O), 0
0 1 2 K

The above derivation shows that, inserting self-connection into A
and propagating embeddings on it, is essentially equivalent to a
weighted sum of the embeddings propagated at each LGC layer.

3.2.2  Relation with APPNP. In a recent work [24], the authors
connect GCN with Personalized PageRank [15], inspiring from
which they propose a GCN variant named APPNP that can
propagate long range without the risk of oversmoothing. Inspired by
the teleport design in Personalized PageRank, APPNP complements
each propagation layer with the starting features (i.e., the 0-th layer
embeddings), which can balance the need of preserving locality
(i.e., staying close to the root node to alleviate oversmoothing)
and leveraging the information from a large neighborhood. The
propagation layer in APPNP is defined as:

E®*D = BEO 4 (1 - HAED), (11)
where f is the teleport probability to control the retaining of
starting features in the propagation, and A denotes the normalized

adjacency matrix. In APPNP, the last layer is used for final
prediction, i.e.,

E® = O + (1 - p)AEKD,
= PEO 4 p(1 - HAEQ + (1 - pRA°EK-D

= BEO 1+ p(1 - HAE® + g1 - PRATEQ + .. + (1 - HKAFEO.

(12)

#The weight matrix in SGCN can be absorbed into the 0-th layer embedding parameters,
thus it is omitted in the analysis.

Aligning with Equation (8), we can see that by setting aj
accordingly, LightGCN can fully recover the prediction embedding
used by APPNP. As such, LightGCN shares the strength of APPNP
in combating oversmoothing — by setting the a properly, we
allow using a large K for long-range modeling with controllable
oversmoothing.

Another minor difference is that APPNP adds self-connection
into the adjacency matrix. However, as we have shown before, this
is redundant due to the weighted sum of different layers.

3.2.3  Second-Order Embedding Smoothness. Owing to the linearity
and simplicity of LightGCN, we can draw more insights into how
does it smooth embeddings. Here we analyze a 2-layer Light GCN
to demonstrate its rationality. Taking the user side as an example,
intuitively, the second layer smooths users that have overlap on
the interacted items. More concretely, we have:

@) 1 () 1 1
T T AP YL
i€eNy INuIVING| ! ieNy [Nl veN; INulVINo|
(13)
We can see that, if another user v has co-interacted with the target
user u, the smoothness strength of v on u is measured by the
coefficient (otherwise 0):

1 1
Cy— = —_—.
o \/INM‘VlNﬂl ieN;ﬂNu |N"

This coefficient is rather interpretable: the influence of a second-
order neighbor v on u is determined by 1) the number of co-
interacted items, the more the larger; 2) the popularity of the
co-interacted items, the less popularity (i.e., more indicative of
user personalized preference) the larger; and 3) the activity of v,
the less active the larger. Such interpretability well caters for the
assumption of CF in measuring user similarity [2, 37] and evidences
the reasonability of LightGCN. Due to the symmetric formulation
of LightGCN, we can get similar analysis on the item side.

(0)
v

(14)

3.3 Model Training

The trainable parameters of LightGCN are only the embeddings of
the 0-th layer, ie., © = {E(O)}; in other words, the model complexity
is same as the standard matrix factorization (MF). We employ the
Bayesian Personalized Ranking (BPR) loss [32], which is a pairwise
loss that encourages the prediction of an observed entry to be
higher than its unobserved counterparts:

M
Lepr==2 >, >, mo(ui—u)) + AEON®  (15)
u=1ieNy j¢ENy
where A controls the Ly regularization strength. We employ the
Adam [22] optimizer and use it in a mini-batch manner. We
are aware of other advanced negative sampling strategies which
might improve the LightGCN training, such as the hard negative
sampling [31] and adversarial sampling [9]. We leave this extension
in the future since it is not the focus of this work.

Note that we do not introduce dropout mechanisms, which are
commonly used in GCNs and NGCF. The reason is that we do not
have feature transformation weight matrices in LightGCN, thus
enforcing Ly regularization on the embedding layer is sufficient
to prevent overfitting. This showcases LightGCN’s advantages of
being simple — it is easier to train and tune than NGCF which
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Table 2: Statistics of the experimented data.

Dataset ‘ User # ‘ Item # ‘ Interaction # ‘ Density
Gowalla 29,858 | 40,981 1,027,370 | 0.00084
Yelp2018 31,668 | 38,048 1,561,406 | 0.00130
Amazon-Book | 52,643 | 91,599 2,984,108 | 0.00062

additionally requires to tune two dropout ratios (node dropout and
message dropout) and normalize the embedding of each layer to
unit length.

Moreover, it is technically viable to also learn the layer
combination coefficients {ak}f:o, or parameterize them with an
attention network. However, we find that learning « on training
data does not lead improvement. This is probably because the
training data does not contain sufficient signal to learn good « that
can generalize to unknown data. We have also tried to learn « from
validation data, as inspired by [5] that learns hyper-parameters on
validation data. The performance is slightly improved (less than 1%).
We leave the exploration of optimal settings of & (e.g., personalizing
it for different users and items) as future work.

4 EXPERIMENTS

We first describe experimental settings, and then conduct detailed
comparison with NGCF [39], the method that is most relevant with
LightGCN but more complicated (Section 4.2). We next compare
with other state-of-the-art methods in Section 4.3. To justify the
designs in LightGCN and reveal the reasons of its effectiveness, we
perform ablation studies and embedding analyses in Section 4.4.
The hyper-parameter study is finally presented in Section 4.5.

4.1 Experimental Settings

To reduce the experiment workload and keep the comparison fair,
we closely follow the settings of the NGCF work [39]. We request
the experimented datasets (including train/test splits) from the
authors, for which the statistics are shown in Table 2. The Gowalla
and Amazon-Book are exactly the same as the NGCF paper used, so
we directly use the results in the NGCF paper. The only exception
is the Yelp2018 data, which is a revised version. According to the
authors, the previous version did not filter out cold-start items in
the testing set, and they shared us the revised version only. Thus
we re-run NGCF on the Yelp2018 data. The evaluation metrics are
recall@20 and ndcg@20 computed by the all-ranking protocol —
all items that are not interacted by a user are the candidates.

4.1.1 Compared Methods. The main competing method is NGCF,
which has shown to outperform several methods including GCN-
based models GC-MC [35] and PinSage [45], neural network-based
models NeuMF [19] and CMN [10], and factorization-based models
MF [32] and HOP-Rec [43]. As the comparison is done on the same
datasets under the same evaluation protocol, we do not further
compare with these methods. In addition to NGCF, we further
compare with two relevant and competitive CF methods:

e Mult-VAE [28]. This is an item-based CF method based on the
variational autoencoder (VAE). It assumes the data is generated
from a multinomial distribution and using variational inference
for parameter estimation. We run the codes released by the

authors®, tuning the dropout ratio in [0,0.2,0.5], and the § in
[0.2,0.4,0.6,0.8]. The model architecture is the suggested one in
the paper: 600 — 200 — 600.

e GRMF [30]. This method smooths matrix factorization by adding
the graph Laplacian regularizer. For fair comparison on item
recommendation, we change the rating prediction loss to BPR
loss. The objective function of GRMF is:

M
L==2) 3 ( 3 motelei - elej)+ Agllew - eil ) + MBI,
u=lieNy Jj¢ENu
(16)
where Ag is searched in the range of [1675,1274,..4,1271].
Moreover, we compare with a variant that adds normalization
to graph Laplacian: Ag||e7“ — —&_||2, which is termed

VIN - VINT

as GRMF-norm. Other hyper-parameter settings are same as
LightGCN. The two GRMF methods benchmark the performance
of smoothing embeddings via Laplacian regularizer, while our
LightGCN achieves embedding smoothing in the predictive
model.

4.1.2  Hyper-parameter Settings. Same as NGCF, the embedding
size is fixed to 64 for all models and the embedding parameters are
initialized with the Xavier method [12]. We optimize LightGCN
with Adam [22] and use the default learning rate of 0.001 and default
mini-batch size of 1024 (on Amazon-Book, we increase the mini-
batch size to 2048 for speed). The Ly regularization coefficient A is
searched in the range of {le_s, 1e7°, ..., 15_2}, and in most cases
the optimal value is 1e~*. The layer combination coefficient ey, is
uniformly set to 1+1K where K is the number of layers. We test K in
the range of 1 to 4, and satisfactory performance can be achieved
when K equals to 3. The early stopping and validation strategies
are the same as NGCF. Typically, 1000 epochs are sufficient for
LightGCN to converge. Our implementations are available in both
TensorFlow® and PyTorch’.

4.2 Performance Comparison with NGCF

We perform detailed comparison with NGCF, recording the
performance at different layers (1 to 4) in Table 4, which also shows
the percentage of relative improvement on each metric. We further
plot the training curves of training loss and testing recall in Figure 3
to reveal the advantages of LightGCN and to be clear of the training
process. The main observations are as follows:

In all cases, Light GCN outperforms NGCF by a large margin. For
example, on Gowalla the highest recall reported in the NGCF
paper is 0.1570, while our LightGCN can reach 0.1830 under
the 4-layer setting, which is 16.56% higher. On average, the
recall improvement on the three datasets is 16.52% and the ndcg
improvement is 16.87%, which are rather significant.

Aligning Table 4 with Table 1 in Section 2, we can see that
LightGCN performs better than NGCF-fn, the variant of NGCF
that removes feature transformation and nonlinear activation. As
NGCF-fn still contains more operations than LightGCN (e.g., self-
connection, the interaction between user embedding and item

Shttps://github.com/dawenl/vae_cf
Chitps://github.com/kuandeng/Light GCN
"https://github.com/gusye1234/pytorch-light-gen
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Table 3: Performance comparison between NGCF and LightGCN at different layers.

Dataset ‘ Gowalla ‘ Yelp2018 Amazon-Book

Layer # ‘ Method ‘ recall ‘ ndcg ‘ recall ‘ ndcg ‘ recall ‘ ndcg

1 Layer NGCF 0.1556 0.1315 0.0543 0.0442 0.0313 0.0241
LightGCN | 0.1755(+12.79%) | 0.1492(+13.46%) | 0.0631(+16.20%) | 0.0515(+16.51%) | 0.0384(+22.68%) | 0.0298(+23.65%)

2 Layers NGCF 0.1547 0.1307 0.0566 0.0465 0.0330 0.0254
LightGCN | 0.1777(+14.84%) | 0.1524(+16.60%) | 0.0622(+9.89%) | 0.0504(+8.38%) | 0.0411(+24.54%) | 0.0315(+24.02%)

3 Layers NGCF 0.1569 0.1327 0.0579 0.0477 0.0337 0.0261
LightGCN | 0.1823(+16.19%) | 0.1555(+17.18%) | 0.0639(+10.38%) | 0.0525(+10.06%) | 0.0410(+21.66%) | 0.0318(+21.84%)

4 Layers NGCF 0.1570 0.1327 0.0566 0.0461 0.0344 0.0263
LightGCN | 0.1830(+16.56%) | 0.1550(+16.80%) | 0.0649(+14.58%) | 0.0530(+15.02%) | 0.0406(+17.92%) | 0.0313(+18.92%)

*The scores of NGCF on Gowalla and Amazon-Book are directly copied from Table 3 of the NGCF paper (https://arxiv.org/abs/1905.08108)
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Figure 3: Training curves of LightGCN and NGCF, which are evaluated by training loss and testing recall per 20 epochs on
Gowalla and Amazon-Book (results on Yelp2018 show exactly the same trend which are omitted for space).

embedding in graph convolution, and dropout), this suggests that
these operations might also be useless for NGCF-fn.

Increasing the number of layers can improve the performance, but
the benefits diminish. The general observation is that increasing
the layer number from 0 (i.e., the matrix factorization model,
results see [39]) to 1 leads to the largest performance gain, and
using a layer number of 3 leads to satisfactory performance in
most cases. This observation is consistent with NGCF’s finding.
Along the training process, LightGCN consistently obtains
lower training loss, which indicates that LightGCN fits the
training data better than NGCF. Moreover, the lower training
loss successfully transfers to better testing accuracy, indicating
the strong generalization power of LightGCN. In contrast, the
higher training loss and lower testing accuracy of NGCF reflect
the practical difficulty to train such a heavy model it well. Note
that in the figures we show the training process under the optimal
hyper-parameter setting for both methods. Although increasing
the learning rate of NGCF can decrease its training loss (even
lower than that of LightGCN), the testing recall could not be
improved, as lowering training loss in this way only finds trivial
solution for NGCF.

4.3 Performance Comparison with
State-of-the-Arts

Table 4 shows the performance comparison with competing
methods. We show the best score we can obtain for each method.
We can see that LightGCN consistently outperforms other methods
on all three datasets, demonstrating its high effectiveness with
simple yet reasonable designs. Note that LightGCN can be further
improved by tuning the aj (see Figure 4 for an evidence), while
here we only use a uniform setting of ﬁ to avoid over-tuning it.
Among the baselines, Mult-VAE exhibits the strongest performance,

which is better than GRMF and NGCF. The performance of GRMF is
on a par with NGCF, being better than MF, which admits the utility
of enforcing embedding smoothness with Laplacian regularizer.
By adding normalization into the Laplacian regularizer, GRMF-
norm betters than GRMF on Gowalla, while brings no benefits on
Yelp2018 and Amazon-Book.

Table 4: The comparison of overall performance among
LightGCN and competing methods.

Dataset ‘ Gowalla ‘ Yelp2018 ‘ Amazon-Book
Method ‘ recall ndcg ‘ recall ndcg ‘ recall ndcg
NGCF 0.1570  0.1327 | 0.0579  0.0477 | 0.0344  0.0263
Mult-VAE 0.1641  0.1335 | 0.0584  0.0450 | 0.0407  0.0315
GRMF 0.1477  0.1205 | 0.0571  0.0462 | 0.0354  0.0270
GRMF-norm | 0.1557 0.1261 | 0.0561 0.0454 | 0.0352  0.0269
LightGCN 0.1830 0.1554 | 0.0649 0.0530 | 0.0411 0.0315

4.4 Ablation and Effectiveness Analyses

We perform ablation studies on LightGCN by showing how
layer combination and symmetric sqrt normalization affect its
performance. To justify the rationality of LightGCN as analyzed
in Section 3.2.3, we further investigate the effect of embedding
smoothness — the key reason of LightGCN’s effectiveness.

4.4.1 Impact of Layer Combination. Figure 4 shows the results of
LightGCN and its variant LightGCN-single that does not use layer
combination (i.e., EX) is used for final prediction for a K-layer
LightGCN). We omit the results on Yelp2018 due to space limitation,
which show similar trend with Amazon-Book. We have three main
observations:
e Focusing on LightGCN-single, we find that its performance first
improves and then drops when the layer number increases from
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Figure 4: Results of LightGCN and the variant that does not use layer combination (i.e., LightGCN-single) at different layers
on Gowalla and Amazon-Book (results on Yelp2018 shows the same trend with Amazon-Book which are omitted for space).

Table 5: Performance of the 3-layer LightGCN with different
choices of normalization schemes in graph convolution.

Table 6: Smoothness loss of the embeddings learned by
LightGCN and MF (the lower the smoother).

Dataset [ Gowalla [ Yelp2018 [ Amazon-Book Dataset Gowalla ‘ Yelp2018 ‘ Amazon-book
Method ‘ recall ndcg ‘ recall ndcg ‘ recall ndcg Smoothness of User Embeddings
LightGCN-L;-L | 0.1724 0.1414 | 0.0630 00511 | 0.0419 0.0320 ME 154493 | 162582 | 380342
LightGCN-L;-R | 0.1578  0.1348 | 0.0587 0.0477 | 0.0334  0.0259 : —

LightGCN-L; | 0159 01319 | 0.0573 00465 | 0.0361 0.0275 LightGCN-single | 128727 | 100917 | 321911
LightGCN-L 0.1589 0.1317 | 0.0619 0.0509 | 0.0383  0.0299 Smoothness of Item Embeddings
LightGCN-R 01420  0.1156 | 0.0521 0.0401 | 0.0252 0019 MF 121067 | 166321 | 283079
LightGCN [0.1830 0.1554 | 0.0649 0.0530 | 0.0411 _ 0.0315 LightGCN-single | 5829.0 \ 6459.8 \ 16866.0

Method notation: -L means only the left-side norm is used, -R means only
the right-side norm is used, and -L; means the L; norm is used.

1 to 4. The peak point is on layer 2 in most cases, while after that
it drops quickly to the worst point of layer 4. This indicates that
smoothing a node’s embedding with its first-order and second-
order neighbors is very useful for CF, but will suffer from over-
smoothing issues when higher-order neighbors are used.
Focusing on LightGCN, we find that its performance gradually
improves with the increasing of layers. Even using 4 layers,
LightGCN’s performance is not degraded. This justifies the
effectiveness of layer combination for addressing over-smoothing,
as we have technically analyzed in Section 3.2.2 (relation with
APPNP).

Comparing the two methods, we find that LightGCN consistently
outperforms Light GCN-single on Gowalla, but not on Amazon-
Book and Yelp2018 (where the 2-layer Light GCN-single performs
the best). Regarding this phenomenon, two points need to be
noted before we draw conclusion: 1) Light GCN-single is special
case of LightGCN that sets ag to 1 and other ¢y to 0; 2) we do
not tune the oy and simply set it as ﬁ uniformly for LightGCN.
As such, we can see the potential of further enhancing the
performance of LightGCN by tuning aj.

4.4.2 Impact of Symmetric Sqrt Normalization. In LightGCN,
. - 1
we employ symmetric sqrt normalization NN on each
neighbor embedding when performing neighborhood aggregation
(cf. Equation (3)). To study its rationality, we explore different
choices here. We test the use of normalization only at the left
side (i.e., the target node’s coefficient) and the right side (i.e., the
neighbor node’s coefficient). We also test L; normalization, i.e.,
removing the square root. Note that if removing normalization,
the training becomes numerically unstable and suffers from not-
a-value (NAN) issues, so we do not show this setting. Table 5

shows the results of the 3-layer LightGCN. We have the following
observations:

The best setting in general is using sqrt normalization at both
sides (i.e., the current design of LightGCN). Removing either side
will drop the performance largely.

The second best setting is using L1 normalization at the left side
only (i.e., LightGCN-L;-L). This is equivalent to normalize the
adjacency matrix as a stochastic matrix by the in-degree.
Normalizing symmetrically on two sides is helpful for the
sqrt normalization, but will degrade the performance of L;
normalization.

4.4.3  Analysis of Embedding Smoothness. As we have analyzed
in Section 3.2.3, a 2-layer LightGCN smooths a user’s embedding
based on the users that have overlap on her interacted items, and
the smoothing strength between two users ¢y is measured in
Equation (14). We speculate that such smoothing of embeddings is
the key reason of LightGCN’s effectiveness. To verify this, we first
define the smoothness of user embeddings as:

MM e e
Su =2 > coouli—s — =), a7
pras s lleull®  lleoll
where the Ly norm on embeddings is used to eliminate the
impact of the embedding’s scale. Similarly we can obtained the
definition for item embeddings. Table 6 shows the smoothness
of two models, matrix factorization (i.e., using the EO for model
prediction) and the 2-layer LightGCN-single (i.e., using the E® for
prediction). Note that the 2-layer Light GCN-single outperforms
MF in recommendation accuracy by a large margin. As can be
seen, the smoothness loss of LightGCN-single is much lower
than that of MF. This indicates that by conducting light graph
convolution, the embeddings become smoother and more suitable
for recommendation.
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Figure 5: Performance of 2-layer LightGCN w.r.t. different
regularization coefficient 1 on Yelp and Amazon-Book.

4.5 Hyper-parameter Studies

When applying LightGCN to a new dataset, besides the standard
hyper-parameter learning rate, the most important hyper-parameter
to tune is the Ly regularization coefficient A. Here we investigate
the performance change of LightGCN w.r.t. A.

As shown in Figure 5, LightGCN is relatively insensitive to A
— even when 1 sets to 0, LightGCN is better than NGCF, which
additionally uses dropout to prevent overfitting®. This shows that
LightGCN is less prone to overfitting — since the only trainable
parameters in LightGCN are ID embeddings of the 0-th layer,
the whole model is easy to train and to regularize. The optimal
value for Yelp2018, Amazon-Book, and Gowalla is 1e73, 1e74, and
1™, respectively. When A is larger than 1e73, the performance
drops quickly, which indicates that too strong regularization will
negatively affect model normal training and is not encouraged.

5 RELATED WORK
5.1 Collaborative Filtering

Collaborative Filtering (CF) is a prevalent technique in modern
recommender systems [7, 45]. One common paradigm of CF
model is to parameterize users and items as embeddings, and
learn the embedding parameters by reconstructing historical user-
item interactions. For example, earlier CF models like matrix
factorization (MF) [26, 32] project the ID of a user (or an item)
into an embedding vector. The recent neural recommender models
like NCF [19] and LRML [34] use the same embedding component,
while enhance the interaction modeling with neural networks.

Beyond merely using ID information, another type of CF methods
considers historical items as the pre-existing features of a user,
towards better user representations. For example, FISM [21] and
SVD++ [25] use the weighted average of the ID embeddings
of historical items as the target user’s embedding. Recently,
researchers realize that historical items have different contributions
to shape personal interest. Towards this end, attention mechanisms
are introduced to capture the varying contributions, such as
ACF [3] and NAIS [18], to automatically learn the importance
of each historical item. When revisiting historical interactions as
a user-item bipartite graph, the performance improvements can
be attributed to the encoding of local neighborhood — one-hop
neighbors — that improves the embedding learning.

8Note that Gowalla shows the same trend with Amazon-Book, so its curves are not
shown to better highlight the trend of Yelp2018 and Amazon-Book.

5.2 Graph Methods for Recommendation

Another relevant research line is exploiting the user-item graph
structure for recommendation. Prior efforts like ItemRank [13],
use the label propagation mechanism to directly propagate user
preference scores over the graph, i.e., encouraging connected nodes
to have similar labels. Recently emerged graph neural networks
(GNNs) shine a light on modeling graph structure, especially high-
hop neighbors, to guide the embedding learning [14, 23]. Early
studies define graph convolution on the spectral domain, such as
Laplacian eigen-decomposition [1] and Chebyshev polynomials [8],
which are computationally expensive. Later on, GraphSage [14] and
GCN [23] re-define graph convolution in the spatial domain, i.e.,
aggregating the embeddings of neighbors to refine the target node’s
embedding. Owing to its interpretability and efficiency, it quickly
becomes a prevalent formulation of GNNs and is being widely
used [11, 29, 47]. Motivated by the strength of graph convolution,
recent efforts like NGCF [39], GC-MC [35], and PinSage [45] adapt
GCN to the user-item interaction graph, capturing CF signals in
high-hop neighbors for recommendation.

It is worth mentioning that several recent efforts provide deep
insights into GNNs [24, 27, 40], which inspire us developing
LightGCN. Particularly, Wu et al. [40] argues the unnecessary
complexity of GCN, developing a simplified GCN (SGCN) model
by removing nonlinearities and collapsing multiple weight
matrices into one. One main difference is that LightGCN and
SGCN are developed for different tasks, thus the rationality of
model simplification is different. Specifically, SGCN is for node
classification, performing simplification for model interpretability
and efficiency. In contrast, LightGCN is on collaborative filtering
(CF), where each node has an ID feature only. Thus, we do
simplification for a stronger reason: nonlinearity and weight
matrices are useless for CF, and even hurt model training. For node
classification accuracy, SGCN is on par with (sometimes weaker
than) GCN. While for CF accuracy, Light GCN outperforms GCN by
a large margin (over 15% improvement over NGCF). Lastly, another
work conducted in the same time [4] also finds that the nonlinearity
is unnecessary in NGCF and develops linear GCN model for CF. In
contrast, our LightGCN makes one step further — we remove all
redundant parameters and retain only the ID embeddings, making
the model as simple as MF.

6 CONCLUSION AND FUTURE WORK

In this work, we argued the unnecessarily complicated design of
GCN:s for collaborative filtering, and performed empirical studies
to justify this argument. We proposed LightGCN which consists
of two essential components — light graph convolution and
layer combination. In light graph convolution, we discard feature
transformation and nonlinear activation — two standard operations
in GCNs but inevitably increase the training difficulty. In layer
combination, we construct a node’s final embedding as the weighted
sum of its embeddings on all layers, which is proved to subsume the
effect of self-connections and is helpful to control oversmoothing.
We conduct experiments to demonstrate the strengths of LightGCN
in being simple: easier to be trained, better generalization ability,
and more effective.
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We believe the insights of LightGCN are inspirational to future

developments of recommender models. With the prevalence of
linked graph data in real applications, graph-based models are
becoming increasingly important in recommendation; by explicitly
exploiting the relations among entities in the predictive model, they
are advantageous to traditional supervised learning scheme like
factorization machines [17, 33] that model the relations implicitly.
For example, a recent trend is to exploit auxiliary information such
as item knowledge graph [38], social network [41] and multimedia
content [44] for recommendation, where GCNs have set up the
new state-of-the-art. However, these models may also suffer from
the similar issues of NGCF since the user-item interaction graph is
also modeled by same neural operations that may be unnecessary.
We plan to explore the idea of LightGCN in these models. Another
future direction is to personalize the layer combination weights oy,
s0 as to enable adaptive-order smoothing for different users (e.g.,
sparse users may require more signal from higher-order neighbors
while active users require less). Lastly, we will explore further the
strengths of Light GCN’s simplicity, studying whether fast solution
exists for non-sampling regression loss [20] and streaming it for
online industrial scenarios.
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